c.im is one of the many independent Mastodon servers you can use to participate in the fediverse.
C.IM is a general, mainly English-speaking Mastodon instance.

Server stats:

2.9K
active users

#graphtheory

3 posts3 participants0 posts today
Jack Linke 🦄<p>Without formal training, the way I modeled physical distribution system <a href="https://social.jacklinke.com/tags/Infrastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Infrastructure</span></a> for utilities districts in my <a href="https://social.jacklinke.com/tags/Django" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Django</span></a> app evolved significantly over time.</p><p>As I learned more about graph theory and simulation, I figured out how to model for both the physical structure and the logical aspects of their interconnection and behavior in various scenarios.</p><p><a href="https://social.jacklinke.com/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://social.jacklinke.com/tags/WaterInfrastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WaterInfrastructure</span></a> <a href="https://social.jacklinke.com/tags/Modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Modeling</span></a></p><p>1/6</p>
Ross Kang<p>For various (mathematical, meteorological, alimentary) reasons, I usually prefer 2π day.<br>Nevertheless, today I make the following offering:</p><p><a href="http://arxiv.org/abs/2503.10002" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">arxiv.org/abs/2503.10002</span><span class="invisible"></span></a></p><p>Pjotr Buys, <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Janvadehe" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>Janvadehe</span></a></span> and I used Shearer's induction to address the question:</p><p>How few independent sets can a triangle-free graph of average degree d have?</p><p> <br>The answer is close to how many a random graph has.<br>What is perhaps surprising is just *how* close it comes.<br>(I queried the combinatorial hive mind about this last week.)</p><p><a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/ExtremalCombinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExtremalCombinatorics</span></a> <a href="https://mathstodon.xyz/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/piDay" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>piDay</span></a></p>
Eugene Alvin Villar 🇵🇭<p>This video is a really pretty visualization of the A* pathfinding algorithm using <a href="https://en.osm.town/tags/OpenStreetMap" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenStreetMap</span></a> road network data for <a href="https://en.osm.town/tags/Chicago" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Chicago</span></a> and <a href="https://en.osm.town/tags/Rome" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rome</span></a> as examples.</p><p><a href="https://youtu.be/CgW0HPHqFE8" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/CgW0HPHqFE8</span><span class="invisible"></span></a></p><p><a href="https://en.osm.town/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputerScience</span></a> <a href="https://en.osm.town/tags/algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithms</span></a> <a href="https://en.osm.town/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://en.osm.town/tags/dataviz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataviz</span></a></p>
Benjamin Smith<p>Calling all <a href="https://fosstodon.org/tags/igraph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>igraph</span></a> enthusiasts!</p><p>We've identified and fixed a bug in {ig.degree.betweenness} related to the cluster_edge_betweenness() function. </p><p>The issue stemmed from a grep() action used for subgraph identification.</p><p>A fix has been implemented, and an update has been pushed to CRAN—it will be available in the coming days.</p><p>In the meantime, you can reinstall from the main branch here: <a href="https://github.com/benyamindsmith/ig.degree.betweenness" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/benyamindsmith/ig.d</span><span class="invisible">egree.betweenness</span></a></p><p><a href="https://fosstodon.org/tags/RStats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStats</span></a> <a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://fosstodon.org/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://fosstodon.org/tags/BugFix" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BugFix</span></a></p>
Jon Awbrey<p>Cactus Language • Overview 3.2<br>• <a href="https://inquiryintoinquiry.com/2025/03/07/cactus-language-overview-3/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/03</span><span class="invisible">/07/cactus-language-overview-3/</span></a></p><p>Given a body of conceivable propositions we need a way to follow the threads of their indications from their object domain to their values for the mind and a way to follow those same threads back again. Moreover, we need to implement both ways of proceeding in computational form. Thus we need programs for tracing the clues sentences provide from the universe of their objects to the signs of their values and, in turn, from signs to objects. Ultimately, we need to render propositions so functional as indicators of sets and so essential for examining the equality of sets as to give a rule for the practical conceivability of sets. Tackling that task requires us to introduce a number of new definitions and a collection of additional notational devices, to which we now turn.</p><p>Resources —</p><p>Cactus Language • Overview<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Overview" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Overview</span></a></p><p>Survey of Animated Logical Graphs<br>• <a href="https://inquiryintoinquiry.com/2024/03/18/survey-of-animated-logical-graphs-7/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/18/survey-of-animated-logical-graphs-7/</span></a></p><p>Survey of Theme One Program<br>• <a href="https://inquiryintoinquiry.com/2024/02/26/survey-of-theme-one-program-6/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/02</span><span class="invisible">/26/survey-of-theme-one-program-6/</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <br><a href="https://mathstodon.xyz/tags/AutomataTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomataTheory</span></a> <a href="https://mathstodon.xyz/tags/FormalLanguages" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalLanguages</span></a> <a href="https://mathstodon.xyz/tags/FormalGrammars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalGrammars</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Jon Awbrey<p>Cactus Language • Overview 3.1<br>• <a href="https://inquiryintoinquiry.com/2025/03/07/cactus-language-overview-3/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/03</span><span class="invisible">/07/cactus-language-overview-3/</span></a></p><p>In the development of Cactus Language to date the following two species of graphs have been instrumental.</p><p>• Painted And Rooted Cacti (PARCAI).<br>• Painted And Rooted Conifers (PARCOI).</p><p>It suffices to begin with the first class of data structures, developing their properties and uses in full, leaving discussion of the latter class to a part of the project where their distinctive features are key to developments at that stage. Partly because the two species are so closely related and partly for the sake of brevity, we'll always use the genus name “PARC” to denote the corresponding cacti.</p><p>To provide a computational middle ground between sentences seen as syntactic strings and propositions seen as indicator functions the language designer must not only supply a medium for the expression of propositions but also link the assertion of sentences to a means for inverting the indicator functions, that is, for computing the “fibers” or “inverse images” of the propositions.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <br><a href="https://mathstodon.xyz/tags/AutomataTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomataTheory</span></a> <a href="https://mathstodon.xyz/tags/FormalLanguages" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalLanguages</span></a> <a href="https://mathstodon.xyz/tags/FormalGrammars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalGrammars</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Jon Awbrey<p>Cactus Language • Overview 1.2<br>• <a href="https://inquiryintoinquiry.com/2025/03/01/cactus-language-overview-1/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/03</span><span class="invisible">/01/cactus-language-overview-1/</span></a></p><p>Resource —</p><p>For readers interested and intrepid enough to read ahead, here’s an outline of my work in progress on the OEIS Wiki, which I’ll be revising and serializing to my Inquiry blog.</p><p>Part 1<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_1" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_1</span></a></p><p>Cactus Language • Syntax<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_1#Syntax" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_1#Syntax</span></a></p><p>Part 2<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_2" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_2</span></a></p><p>Generalities About Formal Grammars<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_2#Generalities" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_2#Generalities</span></a></p><p>Part 3<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_3" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_3</span></a></p><p>Cactus Language • Stylistics<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_3#Stylistics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_3#Stylistics</span></a></p><p>Cactus Language • Mechanics<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_3#Mechanics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_3#Mechanics</span></a></p><p>Cactus Language • Semantics<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_3#Semantics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_3#Semantics</span></a></p><p>Stretching Exercises<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Part_3#Stretching_Exercises" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Part_3#Stretching_Exercises</span></a></p><p>References<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_References" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_References</span></a></p><p>Document History <br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Document_History" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Document_History</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <br><a href="https://mathstodon.xyz/tags/Automata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Automata</span></a> <a href="https://mathstodon.xyz/tags/FormalLanguages" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalLanguages</span></a> <a href="https://mathstodon.xyz/tags/FormalGrammars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalGrammars</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Jon Awbrey<p>Cactus Language • Overview 1.1<br>• <a href="https://inquiryintoinquiry.com/2025/03/01/cactus-language-overview-1/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/03</span><span class="invisible">/01/cactus-language-overview-1/</span></a></p><p>❝Thus, what looks to us like a sphere of scientific knowledge more accurately should be represented as the inside of a highly irregular and spiky object, like a pincushion or porcupine, with very sharp extensions in certain directions, and virtually no knowledge in immediately adjacent areas. If our intellectual gaze could shift slightly, it would alter each quill’s direction, and suddenly our entire reality would change.❞</p><p>— Herbert J. Bernstein • “Idols of Modern Science”</p><p>The following report describes a calculus for representing propositions as sentences, that is, as syntactically defined sequences of signs, and for working with those sentences in light of their semantically defined contents as logical propositions. In their computational representation the expressions of the calculus parse into a class of graph‑theoretic data structures whose underlying graphs are called “painted cacti”.</p><p>Painted cacti are a specialization of what graph‑theorists refer to as “cacti”, which are in turn a generalization of what they call “trees”. The data structures corresponding to painted cacti have especially nice properties, not only useful in computational terms but interesting from a theoretical standpoint. The remainder of the present Overview is devoted to motivating the development of the indicated family of formal languages, going under the generic name of Cactus Language.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <br><a href="https://mathstodon.xyz/tags/Automata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Automata</span></a> <a href="https://mathstodon.xyz/tags/FormalLanguages" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalLanguages</span></a> <a href="https://mathstodon.xyz/tags/FormalGrammars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalGrammars</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Ross Kang<p>A question for the (combinatorial) hive mind.</p><p>There are a lot of extremal results that are matched asymptotically by some probabilistic construction, but with some gap, often quite substantial. I'm thinking about the Ramsey numbers R(k,k) or R(3,k), but examples of this phenomenon are prevalent.</p><p>I'm curious, does someone out there know of good examples of (extremal) results where some probabilistic construction (e.g. via a random graph) is matched asymptotically, and very precisely?</p><p><a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>combinatorics</span></a></p>
zartom<p>Visualizing Interconnected Networks with Matplotlib and NetworkX<br>Learn to visualize complex networks using Network Visualization Matplotlib &amp; NetworkX in Python. Create insightful visualizations &amp; communicate complex data clearly! <a href="https://mastodon.social/tags/NetworkVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkVisualization</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/Matplotlib" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Matplotlib</span></a> <a href="https://mastodon.social/tags/NetworkX" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkX</span></a> <a href="https://mastodon.social/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataVisualization</span></a> <a href="https://mastodon.social/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a><br><a href="https://tech-champion.com/programming/python-programming/visualizing-interconnected-networks-with-matplotlib-and-networkx/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tech-champion.com/programming/</span><span class="invisible">python-programming/visualizing-interconnected-networks-with-matplotlib-and-networkx/</span></a></p>
zartom<p>Efficiently Creating and Visualizing Symmetric Adjacency Matrices in Python<br>Master Python Adjacency Matrix techniques! Learn efficient creation, NetworkX visualization, &amp;amp; handling of large datasets. Represent &amp;amp; analyze complex relationships in your data. <a href="https://mastodon.social/tags/PythonAdjacencyMatrix" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PythonAdjacencyMatrix</span></a> <a href="https://mastodon.social/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mastodon.social/tags/NetworkX" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkX</span></a> <a href="https://mastodon.social/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataVisualization</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/GraphAlgorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphAlgorithms</span></a><br><a href="https://tech-champion.com/programming/python-programming/efficiently-creating-and-visualizing-symmetric-adjacency-matrices-in-python/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tech-champion.com/programming/</span><span class="invisible">python-programming/efficiently-creating-and-visualizing-symmetric-adjacency-matrices-in-python/</span></a></p>
zartom<p>Network Graph Visualization: Improving Clarity in Dense Clusters with NetworkX<br>Improve Network Graph Visualization with NetworkX &amp; Matplotlib! Learn simple yet effective strategies to enhance clarity, especially in dense clusters. Explore alternative layout algorithms &amp; parameter adjustments for insightful data representation. <a href="https://mastodon.social/tags/NetworkGraphVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkGraphVisualization</span></a> <a href="https://mastodon.social/tags/NetworkX" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkX</span></a> <a href="https://mastodon.social/tags/Matplotlib" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Matplotlib</span></a> <a href="https://mastodon.social/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataVisualization</span></a> <a href="https://mastodon.social/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a><br><a href="https://tech-champion.com/programming/python-programming/network-graph-visualization-improving-clarity-in-dense-clusters-with-networkx/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tech-champion.com/programming/</span><span class="invisible">python-programming/network-graph-visualization-improving-clarity-in-dense-clusters-with-networkx/</span></a></p>
Fractal Kitty<p>Refined my haiku visual a little today. I think it would be fun to see if there are any paths to take these words and traverse all of the haiku and if so - how many paths. </p><p>The dataset is Creative Commons if anyone wants to fork and play. </p><p><a href="https://codepen.io/fractalkitty/pen/QwWbGjd" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">codepen.io/fractalkitty/pen/Qw</span><span class="invisible">WbGjd</span></a></p><p><a href="https://mathstodon.xyz/tags/recurse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recurse</span></a> <a href="https://mathstodon.xyz/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://mathstodon.xyz/tags/haiku" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haiku</span></a> <a href="https://mathstodon.xyz/tags/poetry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>poetry</span></a> <a href="https://mathstodon.xyz/tags/datavis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavis</span></a> <a href="https://mathstodon.xyz/tags/graphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphTheory</span></a></p>
Ross Kang<p>Starting out in mathematical research, especially in discrete mathematics, a big focus is problem-solving. It's like a race, and once you've solved one, you set out right away for the next adrenaline rush.</p><p>Take for granted a bustling market of open problems (again, especially in discrete mathematics). Scour papers or problem sites. Challenge close colleagues with the ones that eluded you. The harder, the better, right? There is occasionally awkward coffee talk of that intangible `taste' or `judgement', but, come on, less talk and more solving!</p><p>(please imagine here a subtly ironic tone in my voice)</p><p>(1/3)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <br><a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphtheory</span></a> <br><a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>combinatorics</span></a> <br><a href="https://mathstodon.xyz/tags/ExtremalCombinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExtremalCombinatorics</span></a></p>
Ross Kang<p>A post of <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@11011110" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>11011110</span></a></span> has reminded me that (after a year and a half lurking here) it's never too late for me to toot and pin an intro here.</p><p>I am a Canadian mathematician in the Netherlands, and I have been based at the University of Amsterdam since 2022. I also have some rich and longstanding ties to the UK, France, and Japan.</p><p>My interests are somewhere in the nexus of Combinatorics, Probability, and Algorithms. Specifically, I like graph colouring, random graphs, and probabilistic/extremal combinatorics. I have an appreciation for randomised algorithms, graph structure theory, and discrete geometry.</p><p>Around 2020, I began taking a more active role in the community, especially in efforts towards improved fairness and openness in science. I am proud to be part of a team that founded the journal, Innovations in Graph Theory (<a href="https://igt.centre-mersenne.org/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">igt.centre-mersenne.org/</span><span class="invisible"></span></a>), that launched in 2023. (That is probably the main reason I joined mathstodon!) I have also been a coordinator since 2020 of the informal research network, A Sparse (Graphs) Coalition (<a href="https://sparse-graphs.mimuw.edu.pl/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">sparse-graphs.mimuw.edu.pl/</span><span class="invisible"></span></a>), devoted to online collaborative workshops. In 2024, I helped spearhead the MathOA Diamond Open Access Stimulus Fund (<a href="https://www.mathoa.org/diamond-open-access-stimulus-fund/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">mathoa.org/diamond-open-access</span><span class="invisible">-stimulus-fund/</span></a>).</p><p>Until now, my posts have mostly been about scientific publishing and combinatorics.</p><p><a href="https://mathstodon.xyz/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a> <br><a href="https://mathstodon.xyz/tags/openscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openscience</span></a> <br><a href="https://mathstodon.xyz/tags/diamondopenaccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diamondopenaccess</span></a> <br><a href="https://mathstodon.xyz/tags/scientificpublishing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scientificpublishing</span></a> <br><a href="https://mathstodon.xyz/tags/openaccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openaccess</span></a> <br><a href="https://mathstodon.xyz/tags/RemoteConferences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RemoteConferences</span></a> <br><a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>combinatorics</span></a> <br><a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphtheory</span></a> <br><a href="https://mathstodon.xyz/tags/ExtremalCombinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExtremalCombinatorics</span></a> <br><a href="https://mathstodon.xyz/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a></p>
screw_dog<p><a href="https://aus.social/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> puzzle from my child: </p><p>Is it possible to construct a finite set of vectors in R^2 so that by translations alone they can make exactly one graph (up to isomorphism) with exactly one vertex of degree one?</p><p>(Vertices of the graph are endpoints of the vectors, crossings don't create vertices)</p><p><a href="https://aus.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://aus.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://aus.social/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Zoomers of the Sunshine Coast<p>The Hidden Networks <br>That Rule Our World<br>S2 E50 </p><p>Join us for a fascinating deep dive into the world of network analysis, where we explore Node2Vec - a groundbreaking algorithm that helps us understand the hidden communities within complex networks. Unlock profound insights about communities hidden within the vast connections surrounding us.</p><p><a href="https://helioxpodcast.substack.com/p/the-hidden-networks-that-rule-our" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">helioxpodcast.substack.com/p/t</span><span class="invisible">he-hidden-networks-that-rule-our</span></a></p><p><a href="https://mstdn.ca/tags/NetworkAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NetworkAnalysis</span></a> <a href="https://mstdn.ca/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mstdn.ca/tags/ComplexSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComplexSystems</span></a> <a href="https://mstdn.ca/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mstdn.ca/tags/Node2Vec" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Node2Vec</span></a> <a href="https://mstdn.ca/tags/NeuralNetworks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NeuralNetworks</span></a> <a href="https://mstdn.ca/tags/SocialNetworks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SocialNetworks</span></a> <a href="https://mstdn.ca/tags/Podcast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Podcast</span></a> </p><p><a href="https://www.buzzsprout.com/2405788/episodes/16420355" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">buzzsprout.com/2405788/episode</span><span class="invisible">s/16420355</span></a></p>
Victoria Stuart 🇨🇦 🏳️‍⚧️<p>Mathematics opens black box of AI decision-making<br><a href="https://phys.org/news/2025-01-mathematical-technique-black-ai-decision.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-01-mathemat</span><span class="invisible">ical-technique-black-ai-decision.html</span></a></p><p>* understanding how neural networks (NN) make decisions<br>* poorly understood process in machine learning</p><p>Image segmentation w. traveling waves in exactly solvable recurrent NN<br><a href="https://www.pnas.org/doi/10.1073/pnas.2321319121" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pnas.org/doi/10.1073/pnas.2321</span><span class="invisible">319121</span></a></p><p>* RNN performing simple image segmentation, also exactly mathematically solvable<br>* math understanding precisely how int. connections w/i NN create visual computations</p><p><a href="https://mastodon.social/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://mastodon.social/tags/NN" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NN</span></a> <a href="https://mastodon.social/tags/RNN" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RNN</span></a> <a href="https://mastodon.social/tags/MLtheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MLtheory</span></a> <a href="https://mastodon.social/tags/SpectralGraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SpectralGraphTheory</span></a> <a href="https://mastodon.social/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
LavX News<p>Unlocking the Power of Treewidth: A Deep Dive into Graph Theory's Hidden Gem</p><p>Treewidth, a crucial concept in graph theory, is revolutionizing fields from game theory to network science. This article explores its definitions, computational significance, and wide-ranging applica...</p><p><a href="https://news.lavx.hu/article/unlocking-the-power-of-treewidth-a-deep-dive-into-graph-theory-s-hidden-gem" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">news.lavx.hu/article/unlocking</span><span class="invisible">-the-power-of-treewidth-a-deep-dive-into-graph-theory-s-hidden-gem</span></a></p><p><a href="https://mastodon.cloud/tags/news" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>news</span></a> <a href="https://mastodon.cloud/tags/tech" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tech</span></a> <a href="https://mastodon.cloud/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mastodon.cloud/tags/Treewidth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Treewidth</span></a> <a href="https://mastodon.cloud/tags/AlgorithmicComplexity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicComplexity</span></a></p>
LavX News<p>Revolutionizing Mathematics: The Rise of Automated Conjecturing with TxGraffiti</p><p>In a groundbreaking advancement for the field of mathematics, the newly introduced program TxGraffiti is set to automate the generation of mathematical conjectures, particularly within graph theory. T...</p><p><a href="https://news.lavx.hu/article/revolutionizing-mathematics-the-rise-of-automated-conjecturing-with-txgraffiti" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">news.lavx.hu/article/revolutio</span><span class="invisible">nizing-mathematics-the-rise-of-automated-conjecturing-with-txgraffiti</span></a></p><p><a href="https://mastodon.cloud/tags/news" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>news</span></a> <a href="https://mastodon.cloud/tags/tech" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tech</span></a> <a href="https://mastodon.cloud/tags/AutomatedConjecturing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomatedConjecturing</span></a> <a href="https://mastodon.cloud/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mastodon.cloud/tags/MathematicsAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathematicsAI</span></a></p>