c.im is one of the many independent Mastodon servers you can use to participate in the fediverse.
C.IM is a general, mainly English-speaking Mastodon instance.

Server stats:

2.9K
active users

#VignolaProportions

0 posts0 participants0 posts today
The bottom 1/3 of the #columnShaft for an #IonicColumn is a perfect cylinder. So the line below point B is a straight line.

In https://pixelfed.social/p/Splines/791723063470910081, we blended the bottom end of the 60° arc and the top end of the long interpolated curve between points J and K. Now blend the bottom end of the interpolated curve and the top end of the straight line between points B and C to obtain the 3rd and final #NURBS segment for the #primaryProfileCurve of the shaft.

Just like there's a #cavetto and #fillet near the #neck of the shaft, there is a fillet and cavetto near the foot of the shaft. However, there is a subtle difference between the two. The cavetto near the neck is tangential to the blended #NURBS curve that is not a straight line. The profile curve for the cavetto near the foot is tangential to a straight line.

There is a special name for a cavetto that is tangential to a straight line or flat surface, like the two cavetto moldings in the #dado of the #pedestal. It's called a #conge. Another alternate name for the cavetto molding is #cove, which is evocative of "cave" because of its concave profile curve.

Above the neck is a fillet 8 units tall and an #astragal 16 units tall that #Scarlata puts in braces in the column shaft section within his tables of #VignolaProportions, with a note saying they are not counted as part of the shaft but are accounted for as part of the #capital.

I decided to include the top fillet as part of the shaft and keep the astragal with the capital. It does not change the design or alter the proportions in any way, but the inclusion of the fillet makes it more practical for #3DPrinting and #CNCMilling of the neck. This concludes the profile curve for the shaft with a height of 291 parts or 2328 units + 8 for fillet.

The column shaft is tapered in the upper 2/3 due to #entasis whose purpose is to make optical corrections to the shape of the column which, without correction, appeared concave near the top.
Arcs and lines toil for #splines

2500 years ago, when they had neither computers nor #CAD tools, designers and architects relied on knowledge of algebra, geometry, and trigonometry for their daily work. It was a mere 350 years ago that Leibniz and Newton brought calculus as a new mathematical tool for design and engineering.

Before computers arrived, artists, designers, and architects toiled with manual drafting tools to engineer breathtaking masterpieces. "Toil" is not an exaggeration to describe that endeavor, even though I suspect some of them really enjoyed what they were doing.

#Scarlata compiled an entire book on #VignolaProportions with painstaking accuracy and high precision before there were calculators and spreadsheets, making it "easy" to convert from µ to physical units in both English and Metric systems, but the world has moved on, his work is forgotten, and nobody is thankful for his contributions.

If you have a CAD tool, you need not toil. Simply draw an arc of radius µ = 144 that is centered on the #columnAxis and passes through point B. Then draw a vertical line parallel to the column axis at x = µ * 5/6, or 120 units. Use this line to split the arc and trim away the left portion of the arc. Next, divide the length of the remaining portion of the arc into 8 equal portions using your CAD tool to mark points 1 through 8 as shown. If your CAD tool is able to divide the leftover arc this way, you can just ignore the angular lines radiating from the center. Otherwise, I will show you how to use them as a fallback.

Now look at point C, which seems like it is vertically above point B, but it is not. It is actually vertically above point 1.

Draw 7 more vertical lines starting with point 1, then point 2, and so on. Mark point C at 192 units vertically above on line 1, D at 192*2 on line 2, E at 192*3 on line 3, and so on until you reach point J.

Select these 8 points and use your CAD program to interpolate a free-form NURBS curve to fit these points.