c.im is one of the many independent Mastodon servers you can use to participate in the fediverse.
C.IM is a general, mainly English-speaking Mastodon instance.

Server stats:

2.9K
active users

#droplets

2 posts2 participants0 posts today
Reflections / Riflessioni
#texturetuesday no.3

Big thank you to all of you for leaving likes, comments, shares and following! It's been so fun coming up with these little projects to share with you and I really appreciate the feedback! ♥️🫂 #hugs

#grateful #photography #amateurphotography #photo #water #macro #magnify #glass #shower #rainbow #pink #blue #red #green #abstract #experiment #abstractart #droplets #small #colours #light #photo #astratto #colori #europe #bologna #weird #texture #detail #small #try

“The Ballet of Colors”

Thomas Blanchard’s short film “The Ballet of Colors” plunges viewers into a warm spectrum of roiling oil and paint. Fluid dynamically speaking, it could be subtitled “the Plateau-Rayleigh instability” thanks to its focus on retracting paint ruptures and ligaments breaking into droplets. Unlike some other videos of this genre, Blanchard uses a high-speed camera here, filming the action at 1,000 frames per second, and the result is smooth, crisply focused, and absolutely delectable. (Video and image credit: T. Blanchard et al.)

A Drop’s Shape Effects

Falling raindrops get distorted by the air rushing past them, ultimately breaking large droplets into many smaller ones. This research poster shows how variable this process is by showing two different raindrops, both of the same 8-mm initial diameter. On the left, the drop is prolate — longer than it is wide — and on the right, the drop is oblate — wider than it is long. Moving from bottom to top, we see a series of snapshots of each drop’s shape as it deforms and, eventually, breaks into smaller drops. The overall process is similar for each: the drop flattens, dimples, and then inflates like a sail, with part of the drop thinning into a sheet and ultimately breaking into smaller droplets. Yet, each drop’s specific details are entirely different. (Image credit: S. Dighe et al.)

“Trinity”

Inspired by the film Oppenheimer, artist Thomas Blanchard created “Trinity,” a short film imagining a nuclear explosion with macro-scale fluid motion. There’s clever video editing and compositing in this video, but no CGI. Instead, Blanchard filmed fire, sparklers, alcohol inks, pigments and more up close and in stunning detail. As always, his work is a reminder of the amazing possibilities of analog-based art. (Video and image credit: T. Blanchard)

Quick-Drying, Fast-Cracking

Water droplets filled with nanoparticles leave behind deposits as they evaporate. Like a coffee ring, particles in the evaporating droplet tend to gather at the drop’s edge (left). As the water evaporates, the deposit grows inward (center) and cracks start to form radially. After just a couple minutes, the solid deposit covers the entire area of the original droplet and is shot through with cracks (right).

Researchers found that the cracks’ patterns and propagation are predictable through a model that balances the local elastic energy and and the energy cost of fracture. They also found that the spacing between radial cracks depends on the deposit’s local thickness. Besides explaining the patterns seen here, these cracking models could help analyze old paintings, where cracks could hide information about the artist’s methods and the artwork’s condition. (Image and research credit: P. Lilit et al.; via Physics Today)

The first winter aconites bloomed alongside the snowdrops, brightening the cold ground with their vibrant yellow petals. It’s always a delight to witness the first signs of spring, even in the heart of winter 🌿✨

SWIPE ➡️ for a close up on the details and the drops!
I'm enjoying the focus bracketing feature on my a7 IV. It's so much easier to capture photos for a focus stack now!⁠

⚙️ My macro photoraphy settings: #SonyAlpha a7 IV + FE 90mm F2.8 Macro G OSS | 1/320s, f/2.8, ISO 400, 28 photo focus stack | 28.01.2025

Create captions like this ☝🏻 with your photo's EXIF information automatically extracted and formatted with my new FREE tool!

#watwrdrops #droplets #winteraconite #yellowflowers #macrophotography #flowerphotography #sonyalpha #spring #photography #springflowers #macro #flowermacro

Explosively Jetting

Dropping water from a plastic pipette onto a pool of oil electrically charges the drop. Then, as it evaporates, it shrinks and concentrates the charges closer and closer. Eventually, the strength of the electrical charge overcomes surface tension, making the drop form a cone-shaped edge that jets out tiny, highly-charged microdrops. Afterward, the drop returns to its spherical shape… until shrinkage builds up the charge density again. This microjetting behavior can carry on for hours! (Video and image credit: M. Lin et al.; research preprint: M. Lin et al.)

The Mystery of the Binary Droplet

What goes on inside an evaporating droplet made up of more than one fluid? This is a perennially fascinating question with lots of permutations. In this one, researchers observed water-poor spots forming around the edges of an evaporating drop, almost as if the two chemicals within the drop are physically separating from one another (scientifically speaking, “undergoing phase separation“). To find out if this was really the case, they put particles into the drop and observed their behavior as the drop evaporated. What they found is that this is a flow behavior, not a phase one. The high concentration of hexanediol near the edge of the drop changes the value of surface tension between the center and edge of the drop. And that change is non-monotonic, meaning that there’s a minimum in the surface tension partway along the drop’s radius. That surface tension minimum is what creates the separated regions of flow. (Video and image credit: P. Dekker et al.; research pre-print: C. Diddens et al.)

Within a Drop

In this macro video, various chemical reactions swirl inside a single dangling droplet. Despite its tiny size, quite a lot can go on in a drop like this. Both the injection of chemicals and the chemical reactions themselves can cause the flows we see here. Surface tension variations and capillary waves on the exterior of the drop can play a role, too. Just because a flow is tiny doesn’t mean it’s simple. (Video and image credit: B. Pleyer; via Nikon Small World in Motion)

Chemical reactions swirl within a single, hanging droplet.